Incerro brings you Dravya AI, the UI Engine for Smart Glasses
AI Infrastructure & Protocols
Dec 10, 2025

Rushikesh Adhav
AI-powered experiences - from chatbots to virtual assistants - have become increasingly sophisticated. However, they remain isolated from live enterprise data, meaning they often can’t access the most current information in databases, documents, or business applications. In practice, every new data source or tool (CRM, ERP, file storage, etc.) has required its own custom connector. This creates a tangled “M×N” problem: connecting M AI clients to N data systems results in M×N integrations. The result is brittle, one-off solutions that don’t scale. To break out of these silos, AI experiences need a standardized bridge to back-end systems. The Model Context Protocol (MCP) provides that bridge, offering a unified way for AI agents to discover and securely interact with real business systems.
Modern AI models (LLMs) are powerful reasoners, but they only know what’s in their training data or what’s manually provided at runtime. In an enterprise setting, much of the critical context lives in proprietary systems (customer databases, supply-chain apps, internal wikis, etc.). Today, giving an AI assistant access to those systems means writing custom “glue code” for each one. This leads to three key issues:

In short, enterprises end up with many capable AI tools that simply cannot tap into real-time business context. This severely limits their usefulness. For example, a helpdesk AI might generate answers based on general knowledge but cannot fetch the latest customer order status from a CRM without a bespoke integration.
The Model Context Protocol (MCP) is an open standard designed to solve this integration problem. Think of MCP as a “universal adapter” or standard interface that lets AI systems plug into external data and services. Developed by Anthropic and now open-source, MCP defines how an AI agent can discover and use tools, data sources, and prompts in a consistent way.
Concretely, MCP works with a client-server architecture:
When an MCP-enabled AI starts, it queries connected servers to discover available tools and data. The server responds with structured metadata: descriptions of each tool/function, required parameters, and permission rules. The AI agent can then “call” these tools with JSON-formatted arguments. The server executes the requested action (for example, running a database query or retrieving a document) and returns the result in a machine-readable format.
This dynamic, discovery-driven model is fundamentally different from calling fixed REST APIs. Instead of hard-coding endpoints and payloads, the AI can explore what services exist and invoke them on-the-fly. In effect, MCP turns an AI from a closed system into an agentic workflow engine: it can reason about what tools to use and chain multiple steps across different back-end systems. As Stibo Systems explains, MCP is “the bridge between reasoning and real-world action” that lets AI agents interact with enterprise data securely and at scale.
Under MCP, every connection begins with self-describing tools. When a server starts, it “announces” each available function: what it does, what parameters it needs, and what kind of response it returns. For example, a Slack server might register a postMessage(channel, text) tool, or a database server might register queryDatabase(queryString). The AI client asks the server, “What can you do?” and receives a catalog of these tools and data resources.
The AI model (or agent) can then pick which tools to use. It reads the descriptions to decide which function applies, fills in the required parameters, and invokes the tool via the protocol. Because all communication is in a standard format (typically JSON-RPC), the model doesn’t have to deal with different APIs or data formats for each service. The server handles authentication, execution, and returns the result back to the model.
This discover-then-invoke loop can repeat many times, enabling complex multi-step workflows. For instance, an AI agent might discover it has a customer database server available and a Slack server, then query a customer’s record and automatically send a Slack message - all orchestrated by the agent’s reasoning. Crucially, none of this requires manual reprogramming for each combination: once servers are implemented, any MCP-aware agent can use them.
MCP unlocks several important advantages for intelligent applications:
Together, these benefits let organizations amplify their data infrastructure for AI. As one analysis put it, MCP “replaces fragmented integrations with a simpler, more reliable single protocol for data access”, making it much easier for AI agents to fetch exactly the context they need.
MCP’s flexibility enables a wide range of intelligent workflows across industries. A few examples:
These scenarios (and many others) illustrate how MCP turns any AI client into a context-aware agent. By layering MCP on top of existing systems (databases, ERPs, MDM platforms, cloud services, etc.), companies transform static data APIs into dynamic, AI-ready services. Agents can not only fetch data but understand its meaning and governance, because MCP schemas carry that semantic context. The result is smarter automation: AI systems that securely tap into live data and even reason about data lineage and policies as they operate.
MCP provides the standard bridge that intelligent AI experiences need to access real-world data. By decoupling AI agents from custom integrations, MCP enables truly context-aware workflows across any enterprise system. Adopting this open protocol means AI applications can focus on reasoning and decision-making, while the heavy lifting of connectivity is handled seamlessly. In practice, MCP transforms powerful but isolated models into versatile collaborators that fetch, combine, and act on live business information, unlocking the next generation of AI-driven innovation.